être en location - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

être en location - перевод на Английский

CONCEPT IN STATISTICS
Location family; Location model (statistics); Location parameters

être en location      
be renting

Определение

location
(locations)
Frequency: The word is one of the 3000 most common words in English.
1.
A location is the place where something happens or is situated.
The first thing he looked at was his office's location...
Macau's newest small luxury hotel has a beautiful location.
= setting
N-COUNT: usu with supp
2.
The location of someone or something is their exact position.
She knew the exact location of The Eagle's headquarters.
= position
N-COUNT: with poss
3.
A location is a place away from a studio where a film or part of a film is made.
...an art movie with dozens of exotic locations...
We're shooting on location.
N-VAR: oft on N

Википедия

Location parameter

In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter x 0 {\displaystyle x_{0}} , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

  • either as having a probability density function or probability mass function f ( x x 0 ) {\displaystyle f(x-x_{0})} ; or
  • having a cumulative distribution function F ( x x 0 ) {\displaystyle F(x-x_{0})} ; or
  • being defined as resulting from the random variable transformation x 0 + X {\displaystyle x_{0}+X} , where X {\displaystyle X} is a random variable with a certain, possibly unknown, distribution (See also #Additive_noise).

A direct example of a location parameter is the parameter μ {\displaystyle \mu } of the normal distribution. To see this, note that the probability density function f ( x | μ , σ ) {\displaystyle f(x|\mu ,\sigma )} of a normal distribution N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} can have the parameter μ {\displaystyle \mu } factored out and be written as:

g ( y μ | σ ) = 1 σ 2 π e 1 2 ( y σ ) 2 {\displaystyle g(y-\mu |\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {y}{\sigma }}\right)^{2}}}

thus fulfilling the first of the definitions given above.

The above definition indicates, in the one-dimensional case, that if x 0 {\displaystyle x_{0}} is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.

A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form

f x 0 , θ ( x ) = f θ ( x x 0 ) {\displaystyle f_{x_{0},\theta }(x)=f_{\theta }(x-x_{0})}

where x 0 {\displaystyle x_{0}} is the location parameter, θ represents additional parameters, and f θ {\displaystyle f_{\theta }} is a function parametrized on the additional parameters.